Optimal Linear Quadratic Regulator for Markovian Jump Linear Systems, in the Presence of One Time-Step Delayed Mode Observations
نویسندگان
چکیده
In this paper, we provide the solution to the optimal Linear Quadratic Regulator (LQR) paradigm for Markovian Jump linear Systems, when the continuous state is available at the controller instantaneously, but the mode is available only after a delay of one time step. This paper is the first to investigate the LQR paradigm in the presence of such mismatch between the delay in observing the mode and the continuous state at the controller. We show that the optimal LQR policy is a time-varying matrix gain multiplied by the continuous component of the state, where the gain is indexed in time by the one-step delayed mode. The solution to the LQR is expressed as a collection of coupled Riccati iterations and equations, for the finite and the infinite horizon cases respectively. In the infinite horizon case the solution of the coupled Riccati equations or a certificate of infeasibility is obtained by solving a set of linear matrix inequalities. We also explain the difficulties of solving the LQR problem when the mode is observed by the controller with a delay of more than one step. We show that, with delays of more than one time-step, the optimal control will be a time-varying nonlinear function of the continuous state and of the control input, without presenting an exact solution.
منابع مشابه
New Approach to Exponential Stability Analysis and Stabilization for Delayed T-S Fuzzy Markovian Jump Systems
This paper is concerned with delay-dependent exponential stability analysis and stabilization for continuous-time T-S fuzzy Markovian jump systems with mode-dependent time-varying delay. By constructing a novel Lyapunov-Krasovskii functional and utilizing some advanced techniques, less conservative conditions are presented to guarantee the closed-loop system is mean-square exponentially stable....
متن کاملAN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION
This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...
متن کاملSynchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کاملEnhancement of Articulated Heavy Vehicle Stability by Optimal Linear Quadratic Regulator (LQR) Controller of Roll-yaw Dynamics
Non-linear characteristic of tire forces is the main cause of vehicle lateral dynamics instability, while direct yaw moment control is an effective method to recover the vehicle stability. In this paper, an optimal linear quadratic regulator (LQR) controller for roll-yaw dynamics to articulated heavy vehicles is developed. For this purpose, the equations of motion obtained by the MATLAB sof...
متن کاملOptimal and Robust Sliding Mode Regulator for Linear Systems with Delayed Control
This paper presents the optimal regulator for a linear system with time delay in control input and a quadratic criterion. The optimal regulator equations are obtained using the duality principle, which is applied to the optimal filter for linear systems with time delay in observations. Performance of the obtained optimal regulator is verified in the illustrative example against the best linear ...
متن کامل